# DATA SCIENCE



# **MARCH 2024**

THE NEW LANDSCAPE FOR DATA SCIENCE SKILLS AND A NATIONAL IMPERATIVE FOR INVESTING IN THE NATION'S WORKFORCE

By Carlo Salerno and Frank Steemers





# **TABLE OF CONTENTS**

| I. Executive Summary                                                                            | 3  |
|-------------------------------------------------------------------------------------------------|----|
| II. INTRODUCTION                                                                                | _4 |
| III. MAPPING DATA SCIENCE SKILLS                                                                | 5  |
| IV. FINDINGS                                                                                    | 6  |
| Finding #1 - Employers already have significant demand for data science skills                  | 6  |
| Finding #2 - Data science skills aren't just for data scientists anymore                        | 9  |
| Finding #3 - Employer demand for data science skills will grow even faster over the next decade | 12 |
| V. CONCLUSION                                                                                   | 15 |
| VI. APPENDICES                                                                                  | 16 |
| Endnotes                                                                                        | 21 |

## I. EXECUTIVE SUMMARY

Talk of 'data science' naturally enough evokes thoughts of data scientists – a hot job no doubt but one that is perceived as the rarified domain of a clique of experts with hyper-specialized skills. Yet, in the real-world landscape of career opportunity, data science is no longer a narrow set of skills for a narrow set of occupations. Rather, data science has expanded to include core competencies key to many jobs, industries, and education levels. American industry runs on data and so more and more workers need to be able to collect, analyze, visualize, interpret, and leverage data.

Against this backdrop, the message to everyone – from policy makers in state capitals to workers on Main Street – is clear: data science skills are increasingly critical to good jobs. Further, any state that prioritizes economic growth and opportunity will need to invest in building a workforce that can leverage those skills for a new generation of jobs and tasks in everything from information and management to healthcare, entertainment, and other industries not typically considered to be "data driven."

More specifically, research by the Burning Glass Institute shows that:

- 1. Nationwide, nearly a quarter of US job postings require data science skills. In 2023, fully 22 percent of job postings across the country sought workers with at least one skill related to getting, exploring, or analyzing data, including about a third of listings in the District of Columbia, and 25 percent of those in Iowa, California, Virginia, and Arkansas. Even in states with lower rates, these positions are a meaningful portion of the workforce, including roughly 15 percent of job postings in Vermont, Mississippi, and North Dakota.
- 2. Data science is the backbone of the highest-paying jobs. Many employers offer higher wages to workers who possess certain data science skills not only in data science jobs but also in a much wider array of occupations that increasingly involve data. The most substantial of these wage premiums are for

the most technically sophisticated skills, including Data Strategy and Machine Learning (14 percent) and Artificial Intelligence, Data Architecture, and Big Data (12 percent). Yet, even basic, broad-based data science skills, such as Data Visualization, Data Processing, and Data Cleaning offer meaningful bumps in pay, reflecting the importance of these skills to unlocking high-value opportunities.

- 3. Many occupations that are less data intensive still ask for data science skills. As technology has become an increasingly crucial part of nearly all business operations, a growing range of occupations now require at least some data science skills, including many outside the traditional domain of Science, Technology, Engineering, and Math (STEM). For example, about 1 in ten 2023 job postings for both healthcare practitioners and production clerks included at least one data skill on the list of more common data qualifications, such as data collection, forecasting, and business metrics.
- 4. Data science skills are in demand in jobs that don't require a college degree. Employer demand for basic data science skills is increasing among jobs that do not necessarily require college degrees, most notably for data analysis, forecasting, data collection, and business metrics including 5 percent of bookkeeping clerk jobs and 8 percent of medical specialist job postings.

This report aims to offer new insights into the growing demand for data science skills across the American workforce and to raise awareness of the importance of building these skills into the K-12 curriculum. It is only by ensuring that everyone graduates high school with at least basic fluency in data science that we can create a future in which workers have access to good jobs that offer economic stability and mobility, in which states can attract and retain the most innovative and industrious employers, and in which the nation can preserve its standing as a global economic powerhouse.

# II. INTRODUCTION

The ubiquity of data in the modern world is perhaps no more obvious than in our own pockets. More than 85 percent of Americans now own a smartphone.<sup>1</sup> Our devices allow us to check our bank balances, read restaurant reviews, and decide whether to pack for inclement weather. In other words, we gather the information we need to make informed decisions. In drawing insights from data, all of us, in one way or another, act like data scientists.<sup>2</sup>

It's entirely understandable why most people probably wouldn't consider themselves data scientists. Terms like "data scientist" are relatively new and usually reserved for the sliver of the workforce with degrees and/or careers in quantitative or technological fields. But in the same way that few of us would have ever thought we would carry a miniature computer at all times to handle so many aspects of our daily lives, so too many are increasingly, even if unknowingly, learning and applying data science skills.

That's because data science is more than coding and statistical regressions. Arguably dozens of disparate skills fall under the larger umbrella of data science.

These include skills for identifying what information you need to answer a question or solve a problem, skills for understanding how to contextualize the information you are taking in, as well as skills for effectively communicating what you have learned to others.

Given this wide range of skills and the increasing role of technology in business operations, it is unsurprising that employer demand is swiftly growing for data science skills. Between 2011 and 2021, there has been more than a four-fold increase in the number of occupations where a substantial number of job postings require data science skills.<sup>4</sup> And while the bulk of these are still mostly in STEM jobs, that demand is increasingly spreading to positions most of us would not traditionally associate with data science.

This rise of data science skills in more common jobs is not only increasingly pervasive but also startlingly commonplace. Take for example the \$28 an hour "Sales and Marketing Event Coordinator" position that requires no more than a high school diploma or GED, whose job ad directly asks that successful candidates have proficiency with "collecting and analyzing data." Or consider the

exceptionally common administrative assistant job posting that only requires a high school degree but asks that candidates "develop and maintain statistical data" and suggests that knowledge of Power BI, a common data visualization platform, is a plus.

The growing importance of data science skills both nationally and globally has meaningful consequences for state governments, too. Highly sought after industries like advanced manufacturing, biosciences, and information technology all require workforces skilled in data science. In a 21st century knowledge economy, jobs follow talent. That makes investing in these skills an imperative for any state wanting to prioritize economic growth, business attraction, and social mobility. These are the skills that both unlock good jobs and draw high-value employers.

That investment is more likely to yield a better pay off if it happens as early and as broadly as possible. The logic is simple: as data science skills become more essential for work, they become an essential mandate for education – and our K-12 system is what we look to for building the skills that are most transversal. The growing importance of data science to nearly all jobs, those that often pay the most and are in the highest demand in particular, makes a strong case for ensuring prosperity by ensuring opportunity.

Today, data science skill development is still largely concentrated in college computer science degree programs. That presents an enormous investment challenge in a nation where, even today, 62 percent of adults ages 25 and older do not have a bachelor's degree.<sup>5</sup> While it is true that many data science skills have their foundation in more advanced mathematics and statistics, others - like data collection, management, visualization, and even programming languages - do not. For the millions of Americans whose job prospects will depend on knowledge of more common or basic data science capabilities, centering data science skill investment at the postsecondary level rather than in K-12 level translates into lost access to many of the good jobs and opportunities associated with data science. That not only limits individuals' career mobility but also the nation's overall economic growth potential.

## III. MAPPING DATA SCIENCE SKILLS

Even as there is widening recognition of the importance of data science skills, they have not been widely researched or mapped. As such there is no definitive list, or even agreedupon definition, of which skills comprise data science.

To create structure for the analysis, the Burning Glass Institute researched different approaches for how data science can be integrated into K-12 curricula. We worked with industry experts to validate a comprehensive data science skill taxonomy (see Appendix A). Institute researchers then mined an extensive dataset of hundreds of millions of job postings and tens of thousands of distinct skills<sup>6</sup> to find out in which occupations, sectors, and geographies different data science skills are in greatest demand by employers.

These skills were then grouped based on their similarity to one another and categorized into three general themes:

1) Getting Data, 2) Exploring and Analyzing Data, and

3) Communicating Data. Within these three large data science skill groupings, the research team again drew on patterns borne out in job postings and we relied on expert review to identify the skill subgroups shown in Figure 1.

Getting Data, for example, goes beyond simply collecting information. Rather, data from different sources often

needs to be integrated before analysis and also managed in such a way as to protect sensitive information. The need for an expansive definition also applied for the Exploring and Analyzing Data category, which includes activities as diverse as developing operations metrics or visualizing complex data to statistical analysis and coding.

Grouping and clustering data science skills in this way revealed other patterns that proved useful for the analysis. For example, we determined that data science skills could be grouped by the level of data-intensity of the jobs demanding them. We also determined that certain data science skills were specialized in the sense that they tended to be sought by a relatively small number of math and science-intensive jobs. By contrast, we classified as "common" data science skills those that were demanded transversally across occupations.

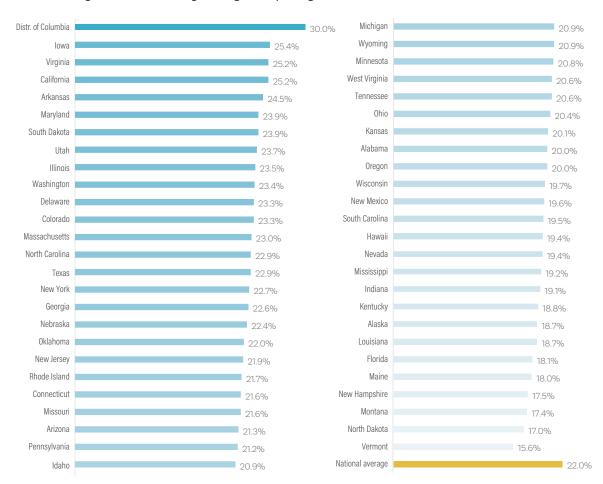
As part of the research, the Burning Glass Institute analyzed job postings data by occupation categories (e.g. business, engineering, education, law) as well as industries like healthcare, utilities, manufacturing and scientific research (Appendix B). We also looked for other patterns among postings seeking data science skills, such as whether they require college credentials.

FIGURE 1 - Data science skill analysis framework. Source: Burning Glass Institute

#### **Getting the Data Communicating Results** + Data presenting **Data Collection Data integration** Data management + Data writing + Data Quality + Data validation + Data privacy + Interpersonal + Data Ethics + Data structures + Data security communication + Data processing + Data Recording + Data governance + Data Acquisition + Data architecture + Data migration + Data Collection + Data cleaning + Data integrity + Data manipulation + Data warehousing **Exploring and Analyzing the Data Business data strategy** Statistics and mathematics Analyzing trends and Data software prediction + Business intelligence + Mathematics + Programming language + Business metrics + Statistical analysis + Analytics + Statistical software + Data strategy + Statistical modeling + Data science + Business intelligence tools Data literacy + Statistical reporting + Data analysis + Statistical methods + Quantitative research + Forecasting + Big data + Artificial intelligence + Algorithms + Machine learning + Data visualization

## IV. FINDINGS

## Finding #1 - Employers already have significant demand for data science skills

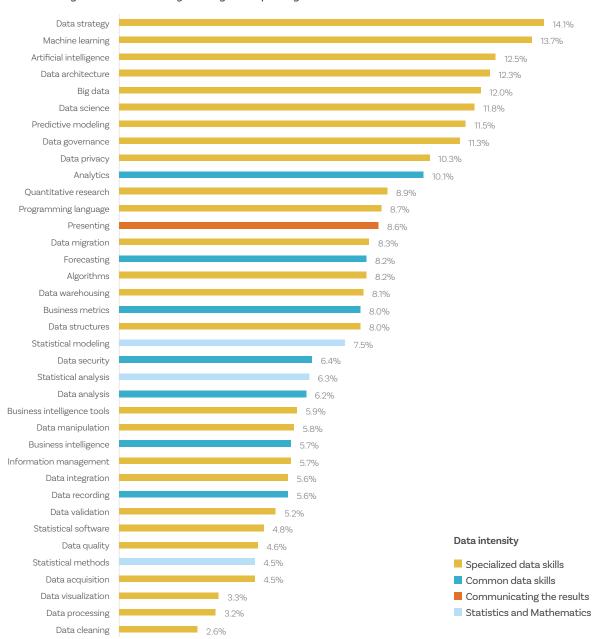

Data science skills are already deeply embedded in the fabric of career opportunity. Nationwide, about one in four job postings includes at least one data science skill among its requirements and many of the fastest growing occupations rely on data science skills. Additionally, employers increasingly offer wage premiums to workers with certain data science skills, reflecting the growing importance of data science to today's businesses.

# (a) Nationwide, nearly a quarter of US job postings require data science skills.

In the same way that data has become integral to daily life in modern America, data science skills are increasingly important to industry as well. In 2023, 22 percent of job postings nationwide called for at least one skill that involved collecting, exploring or analyzing data.

In some places, the demand is even higher (Figure 2). In the District of Columbia close to a third of job postings mentioned at least one of these skills, followed closely by Iowa, Virginia, California, Virginia, and Arkansas (all at 25 percent). Even in the states where the share of job postings is lower than the national average – Vermont, Mississippi, and North Dakota are roughly 15 percent each – it is still a meaningful portion of the workforce. In general, state-by-state variation can be explained by such factors as population, industry and occupation mix, and level of economic growth.<sup>8</sup>

FIGURE 2 - Share of job postings listing at least one data science skill as a share of all job ads in the state, 2023 Source: Burning Glass institute analysis of Lightcast posting data

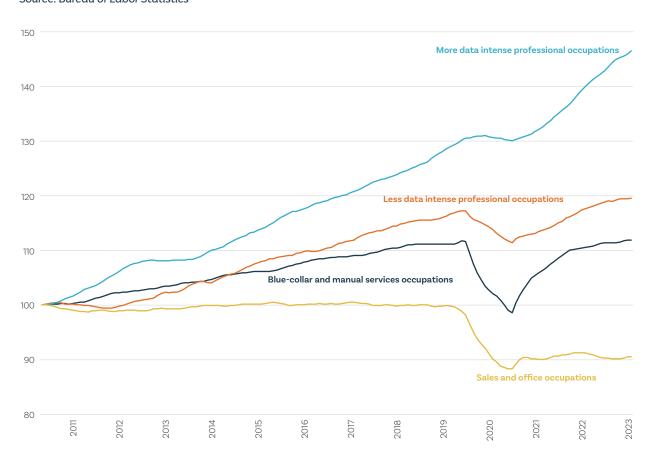



#### (b) Data science is the backbone of the highest-paying careers.

Employers are willing to offer substantial wage premiums to those who possess certain data science skills (Figure 3). Perhaps not surprisingly, the largest wage premiums are for the most technically sophisticated skills, including those grounded in math or statistics. For example, in any given job, employers are willing to pay about 14 percent more for Data Strategy and Machine Learning skills, and roughly 12 percent more for Artificial Intelligence, Data Architecture, and Big Data science skills. Part of the premium is explained by the fact that these skills are particularly important to the best paying employers in any given sector. But premiums for these skills also bear out more broadly across the market.

As the skills become less rooted in math and more related to competencies with mainstream data software and practices, the wage premium shrinks. While the wage premium for some less specialized data science skills may be lower – such as for Analytics (10 percent), Data Analysis (6 percent), and Data Recording (6 percent) – these still translate into meaningfully higher salaries for workers and more opportunities for both better jobs and career advancement. What is more, many workers tend to have more than just a single data science skill.

FIGURE 3 - Wage premium estimates for select data science skills<sup>9</sup> Source: Burning Glass institute analysis of Lightcast posting data




### (c) Over the past decade, the fastest-growing careers have been the most data-intensive

Demand for data scientists and other more data intense occupations has skyrocketed over the past 10 years – in fact, so much so, that this growth almost entirely offset the overall increase in unemployment seen during the COVID-19 pandemic (Figure 4). Likewise, demand for less data intense positions has also increased swiftly, albeit less dramatically. In all cases,

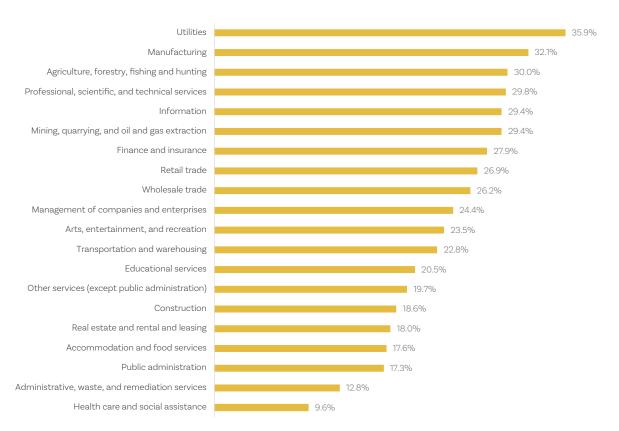
jobs that require at least some data science skills have outpaced the slower rate of growth in blue-collar and manual services occupations and the decline in employment in sales and manual services occupations. This is strong evidence of the continued labor market shift towards data science.

FIGURE 4 - Change in employment by broad occupation type, 2011-2023 Source: Bureau of Labor Statistics



## Finding #2 - Data science skills aren't just for data scientists anymore

As technology has become crucial to all business operations, organizations have needed to develop the capacity to handle large volumes of information. That has driven employer demand for at least some level of data science skills in a much broader swath of sectors and occupations.


# (a) You don't have to work in STEM to need data science skills.

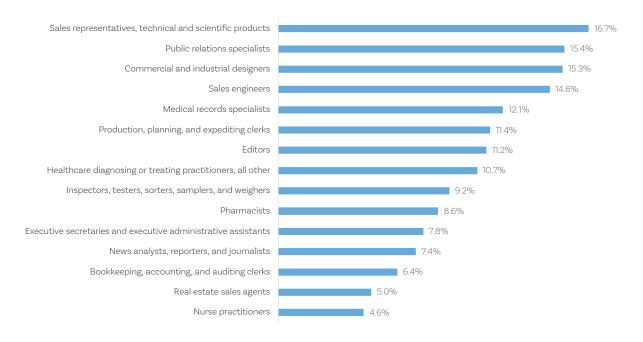
Historically, employers seeking workers with data science skills were largely operating in a small collection of industries and sectors mostly focused on science, technology, engineering, and math (STEM). Over the past decade, however, that has changed. Today, to varying

degrees, data science touches every American industry (Figure 5). Between a quarter and a third of job postings in manufacturing, trade, oil and gas, agriculture, and transportation seek workers with different data science skills – sectors far outside the scope of tech.

Of course, the size of the demand is linked to whether or not that sector has a high concentration of data intense occupations. Sectors that are more focused on STEM will have a higher share of job postings for data science skills than those that aren't. Still, the increasing overall demand for data science skills from employers outside STEM-focused industries signals the growing importance of these skills across the larger labor market.

FIGURE 5 - Share of job postings listing at least one data science skill as a share of all job ads in the industry, 2023 Source: Burning Glass Institute analysis of Lightcast posting data




#### (b) In fact, many occupations that are less data intense require data science skills.

As the demand for data science skills has expanded beyond the domain of STEM-focused industries, a growing range of occupations now require at least some data science skills, including many that are less data intensive, including some that are much less (Figure 6). Today, job postings for medical record specialists, nurse practitioners, and healthcare diagnosticians all

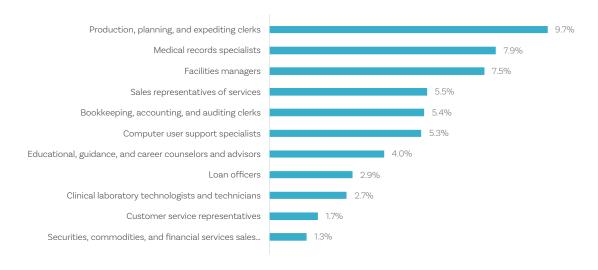
increasingly require some degree of data collection skills. Similarly, bookkeepers and auditors, as well as many sales-related jobs require that workers have proficiency with business metrics and forecasting skills, while people working in public relations, reporting, and editing must be able to communicate data findings to colleagues.

FIGURE 6 - Share of ads mentioning at least one skill classified as a "common" data skill, as share of total jobs ads in less data-intense occupations, 2023.

Source: Burning Glass institute analysis of Lightcast posting data



#### (c) Data science skills are in demand in jobs that don't require a college degree.


As data science skills become more mainstream across sectors and occupations, they are more frequently required in positions that do not necessarily require a college degree. In 2023, for example, one in ten production clerk jobs and one in twelve medical record specialists asked for some kind of skills related to analyzing trends and predictions (Figure 7).

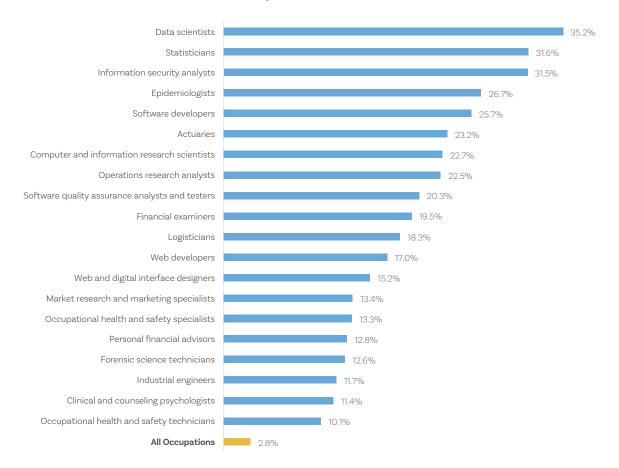
While overall demand for data science skills amongst non-college jobs is still relatively low, these occupations

still tend to value the same kinds of data science skills that are increasingly important to college-level jobs. These include skills like data analysis, forecasting, programming language, or data collection, as well as business operations-related data science skills like business metrics, information management, business intelligence tools, and data recording.

FIGURE 7 - Share of ads mentioning analyzing trends and predictions as a share of all job ads for occupations that generally do not require a college degree, 2023<sup>10</sup>

Source: Burning Glass Institute analysis of Lightcast posting data



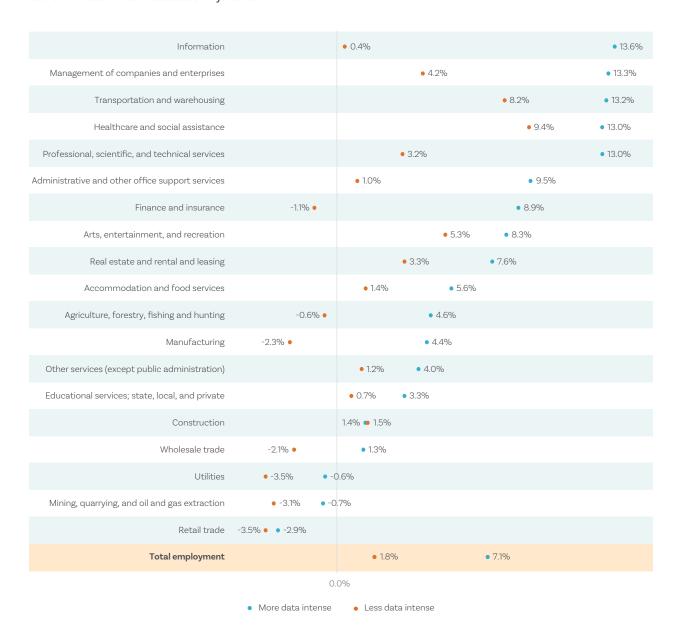

## Finding #3 - Employer demand for data science skills will grow even faster over the next decade

Employer demand for jobs that rely on data science skills shows no signs of slowing. Instead, demand for these occupations is projected to grow considerably in the coming years, and much faster than overall job growth. Over the next ten years, the US labor market is projected to add another 4.7 million new jobs, <sup>11</sup> half of which are more data intense. That is more workers than there are total residents in the states of Kentucky, Louisiana, Oregon, or 23 others.

# (a) Many of the fastest-growing occupations are more data intense.

The Bureau of Labor Statistics forecasts the number of Data Scientist, Information Security Analyst, and Statistician positions to grow between 31 and 35 percent by 2032, as compared to an expected 2.8 percent for national job growth during the same period (Figure 8). Notably, these, and other positions with the highest projected growth rates, are uniformly grounded in math or statistics. They also are the jobs that most frequently seek the skills with the highest wage premiums. However, even amongst the jobs at the bottom of Figure 8, the growth rate is still remarkably strong. Jobs like Actuaries, Market Research Analysts, and Marketing Specialists which are all projected to grow between 18% and 20% percent in the next decade, all routinely seek not just forecasting and analysis skills, but experience with business intelligence tools and data visualization as well.

FIGURE 8 - Top 20 jobs projected to grow the fastest in business, computer engineering, and science occupations, 2022-2032 Source: Bureau of Labor Statistics Projections

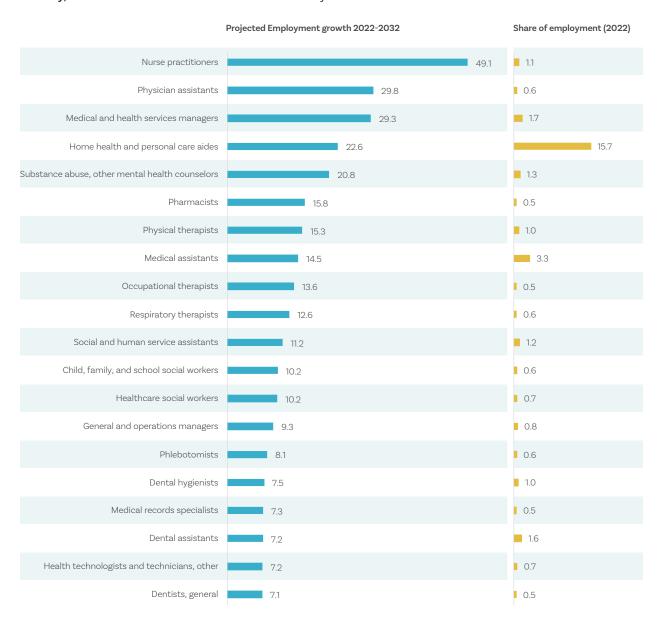



## (b) The employer demand for data science skills is projected to increase across a wide range of sectors.

Over the past decade, data science has become increasingly important to a growing array of industries. Looking forward, that trend is projected to strengthen further (Figure 9). While the largest growth is expected to be in industries with significant shares of data science jobs, like Information (14%), Management

(13%), and Professional Services (13%), a surprising amount of growth is expected in less technology-oriented industries like Transportation and Warehousing (13%), Healthcare and Social Assistance (13%), and Administrative/Office Support (10%).

FIGURE 9 - Projected employment growth by data science skill intensity and industry, 2022-2032 Source: Bureau of Labor Statistics Projections




Scale matters. Take, for example, the Healthcare and Social Assistance sector. The 13% projected growth of more data intensive jobs over the next decade are largely in medical, health services and operations manager positions that today only account for about three percent of all the jobs in that industry (Figure 10). At the same time, jobs with some – albeit less intensive – data science skill demand are expected to grow 9%, driven by dramatic increases in demand for home health and personal care aides, registered nurses, and medical and nursing assistants. Together these account for around one in four

of the new jobs projected in the healthcare industry.

With the exception of registered nurses, these jobs do not typically require college training. All, however, ask that job candidates possess various data science skills. Amongst home health and personal care aides, that number is low – around 2 percent of postings and focused mostly on data recording, yet for nursing and medical assistants, between 6 and 8 percent of jobs ask for skills that include data management, general math and statistics, analyzing trends, and data collection.

FIGURE 10 - Projected employment growth and industry occupation shares for the healthcare and social assistance industry, 2022-2032 Source: Bureau of Labor Statistics Projections



# **V. CONCLUSION**

Data science skills are becoming as critical to Americans' day-to-day and work lives as computers, cell phones, and the internet. It is clear that access to good jobs will increasingly require people to have data science skills. It is also clear that for states to attract thriving industries, then they must have workforces with the data science skills these sectors rely upon. The same is no less true of our nation. For America to maintain its standing as a global economic powerhouse in an increasingly competitive geopolitical landscape, we cannot fall behind in the crucial sphere of data science skills.

To date, we have left it to universities to develop these skills. However, the scope of jobs that will require these skills goes far beyond the rarified scope of higher education. Almost two-thirds of Americans do not have a college degree. We cannot achieve our economic

growth goals by leaving two-thirds of our workforce on the bench. And we cannot assure economic mobility for all workers unless all workers have the skills to access the best paying and fastest growing careers. That sets an imperative to integrate data science education into the nation's K-12 curriculum.

Even for the kinds of mathematically intensive data science skills that are more typically associated with a college education, here too the evidence is clear that these skills are coming to be as important to Main Street industry as they have been to tech. To that end, the question is not whether data science should replace traditional mathematics in the K-12 curriculum as much as how data science can be integrated into traditional K-12 structures to prepare both the college-bound and the work-bound for productive, economically rewarding careers.

# **VI. APPENDICES**

# Appendix A - List of specialized and common data science skills

Source: Burning Glass institute analysis of Lightcast posting data

| Specialized data skills     | Common data skills    | Statistics and mathematics | Communicating the results   |
|-----------------------------|-----------------------|----------------------------|-----------------------------|
| Algorithms                  | Analytics             | Mathematics                | Interpersonal communication |
| Artificial intelligence     | Business intelligence | Statistical analysis       | Presenting                  |
| Big data                    | Business metrics      | Statistical methods        | Writing                     |
| Business intelligence tools | Data analysis         | Statistical modeling       |                             |
| Data acquisition            | Data collection       | Statistical reporting      |                             |
| Data architecture           | Data recording        | Statistical software       |                             |
| Data cleaning               | Data security         |                            |                             |
| Data ethics                 | Forecasting           |                            |                             |
| Data governance             |                       |                            |                             |
| Data integration            |                       |                            |                             |
| Data integrity              |                       |                            |                             |
| Data literacy               |                       |                            |                             |
| Data manipulation           |                       |                            |                             |
| Data migration              |                       |                            |                             |
| Data privacy                |                       |                            |                             |
| Data processing             |                       |                            |                             |
| Data quality                |                       |                            |                             |
| Data science                |                       |                            |                             |
| Data strategy               |                       |                            |                             |
| Data structures             |                       |                            |                             |
| Data validation             |                       |                            |                             |
| Data visualization          |                       |                            |                             |
| Data warehousing            |                       |                            |                             |
| Information management      |                       |                            |                             |
| Machine learning            |                       |                            |                             |
| Predictive modeling         |                       |                            |                             |
| Programming language        |                       |                            |                             |
| Quantitative research       |                       |                            |                             |

# Appendix B - Relative shares of data science skills by SOC-2 groups

Source: Burning Glass institute analysis of Lightcast posting data

|                                        | Data macroc                              | ategory                       | Data subcategory   |                     |                         |                              | Data type                             |                  |                                  |                       |                            |
|----------------------------------------|------------------------------------------|-------------------------------|--------------------|---------------------|-------------------------|------------------------------|---------------------------------------|------------------|----------------------------------|-----------------------|----------------------------|
|                                        | Getting,<br>exploring,<br>analyzing data | Commu-<br>nicating<br>results | Data<br>collection | Data<br>integration | Data<br>mana-<br>gement | Business<br>data<br>strategy | Analyzing<br>trends and<br>prediction | Data<br>software | Statistics<br>and<br>mathematics | Common<br>data skills | Specialized<br>data skills |
| Computer and mathematical              | 53.9%                                    | 37.5%                         | 7.1%               | 7.7%                | 13.6%                   | 5.5%                         | 26.2%                                 | 32.8%            | 11.3%                            | 22.5%                 | 44.0%                      |
| Business and financial operations      | 33.9%                                    | 46.6%                         | 3.5%               | 1.6%                | 5.2%                    | 2.9%                         | 19.7%                                 | 7.9%             | 9.7%                             | 21.5%                 | 13.9%                      |
| Life, physical, and social science     | 32.7%                                    | 40.4%                         | 8.8%               | 1.8%                | 5.5%                    | 0.7%                         | 15.6%                                 | 6.1%             | 10.9%                            | 19.8%                 | 13.7%                      |
| Architecture and engineering           | 32.3%                                    | 34.7%                         | 5.4%               | 1.2%                | 2.3%                    | 1.2%                         | 11.6%                                 | 8.5%             | 14.2%                            | 12.4%                 | 13.8%                      |
| Production                             | 29.2%                                    | 17.7%                         | 2.1%               | 0.2%                | 0.7%                    | 0.5%                         | 1.8%                                  | 0.5%             | 25.4%                            | 3.9%                  | 1.7%                       |
| Management                             | 27.3%                                    | 37.8%                         | 2.6%               | 1.0%                | 3.7%                    | 3.2%                         | 15.4%                                 | 4.1%             | 7.0%                             | 17.4%                 | 9.3%                       |
| Sales and related                      | 23.7%                                    | 32.6%                         | 0.4%               | 0.1%                | 0.9%                    | 1.2%                         | 3.8%                                  | 0.8%             | 17.9%                            | 4.9%                  | 2.0%                       |
| Office and administrative support      | 20.4%                                    | 30.9%                         | 1.5%               | 0.9%                | 1.7%                    | 0.7%                         | 3.3%                                  | 1.1%             | 13.7%                            | 4.9%                  | 3.7%                       |
| Transportation and material moving     | 20.1%                                    | 13.6%                         | 0.8%               | 0.1%                | 0.4%                    | 0.3%                         | 0.8%                                  | 0.1%             | 18.2%                            | 1.7%                  | 0.7%                       |
| Legal                                  | 17.5%                                    | 54.2%                         | 1.4%               | 1.9%                | 8.0%                    | 0.6%                         | 5.9%                                  | 1.1%             | 3.4%                             | 6.9%                  | 10.4%                      |
| Construction and extraction            | 17.1%                                    | 16.3%                         | 1.0%               | 0.4%                | 0.4%                    | 0.4%                         | 2.1%                                  | 0.6%             | 13.8%                            | 3.1%                  | 1.6%                       |
| Farming, fishing, and forestry         | 16.2%                                    | 14.8%                         | 1.4%               | 0.1%                | 0.7%                    | 0.1%                         | 1.8%                                  | 0.9%             | 12.3%                            | 2.7%                  | 2.1%                       |
| Educational instruction and library    | 15.3%                                    | 28.2%                         | 2.1%               | 0.2%                | 1.0%                    | 0.2%                         | 3.6%                                  | 0.8%             | 10.0%                            | 4.5%                  | 2.8%                       |
| Food preparation and serving related   | 13.9%                                    | 13.7%                         | 0.3%               | 0.0%                | 0.1%                    | 0.2%                         | 1.3%                                  | 0.2%             | 12.4%                            | 1.6%                  | 0.3%                       |
| Arts, entertainment, and media         | 13.6%                                    | 32.2%                         | 0.8%               | 0.2%                | 1.4%                    | 0.7%                         | 5.9%                                  | 2.2%             | 4.6%                             | 5.9%                  | 4.7%                       |
| Installation, maintenance, and repair  | 13.5%                                    | 18.5%                         | 1.2%               | 0.1%                | 0.7%                    | 1.2%                         | 2.4%                                  | 0.5%             | 8.6%                             | 3.9%                  | 2.0%                       |
| Personal care and service              | 12.7%                                    | 16.5%                         | 0.7%               | 0.1%                | 0.3%                    | 0.4%                         | 0.9%                                  | 0.2%             | 10.6%                            | 1.8%                  | 0.6%                       |
| Healthcare practitioners and technical | 9.5%                                     | 18.1%                         | 2.8%               | 0.2%                | 1.2%                    | 0.4%                         | 1.5%                                  | 0.4%             | 4.1%                             | 4.4%                  | 1.7%                       |
| Community and social service           | 7.9%                                     | 26.7%                         | 2.8%               | 0.2%                | 1.4%                    | 0.4%                         | 2.0%                                  | 0.4%             | 2.1%                             | 4.6%                  | 2.1%                       |
| Protective service                     | 7.5%                                     | 25.5%                         | 1.6%               | 0.3%                | 0.8%                    | 0.3%                         | 2.6%                                  | 1.4%             | 2.6%                             | 3.7%                  | 2.7%                       |
| Buliding cleaning and maintenance      | 7.1%                                     | 11.5%                         | 0.3%               | 0.0%                | 0.2%                    | 0.3%                         | 0.7%                                  | 0.2%             | 5.7%                             | 1.3%                  | 0.4%                       |
| Healthcare support                     | 6.3%                                     | 14.1%                         | 2.4%               | 0.1%                | 1.0%                    | 0.1%                         | 0.4%                                  | 0.2%             | 2.6%                             | 3.1%                  | 0.9%                       |

Data Science is for Everyone – January 2024

Appendix C Top listed occupations for data science skill sub-clusters by share of ads mentioning at least one skill, 2023

Source: Burning Glass institute analysis of Lightcast posting data

|                                                    | Data macrocategory                        |
|----------------------------------------------------|-------------------------------------------|
|                                                    | Getting, exploring, and<br>analyzing data |
| Statisticians                                      | 87.7%                                     |
| Data scientists                                    | 87.0%                                     |
| Automotive glass installers and repairers          | 81.3%                                     |
| Actuaries                                          | 79.6%                                     |
| Computer and information research scientists       | 78.3%                                     |
| Database administrators                            | 76.1%                                     |
| Database architects                                | 74.5%                                     |
| Financial and investment analysts                  | 65.6%                                     |
| Software developers                                | 64.5%                                     |
| Financial specialists, all other                   | 58.4%                                     |
| Geoscientists, except hydrologists and geographers | 55.7%                                     |
| Software quality assurance analysts and testers    | 55.6%                                     |
| Gambling dealers                                   | 53.2%                                     |
| Operations research analysts                       | 51.3%                                     |
| Computer hardware engineers                        | 50.9%                                     |
| Biological scientists, all other                   | 50.7%                                     |
| Social scientists and related workers, all other   | 50.1%                                     |
| Management analysts                                | 49.8%                                     |
| Computer and information systems managers          | 49.7%                                     |
| Tutors                                             | 49.2%                                     |
| Natural sciences managers                          | 48.6%                                     |
| Aerospace engineers                                | 48.3%                                     |
| Computer numerically controlled tool operators     | 48.0%                                     |
| Logisticians                                       | 47.9%                                     |
| Computer occupations, all other                    | 47.5%                                     |

|                                                            | Data category |
|------------------------------------------------------------|---------------|
|                                                            | Getting data  |
| Database administrators                                    | 60.1%         |
| Database architects                                        | 56.7%         |
| Data scientists                                            | 52.2%         |
| Statisticians                                              | 49.0%         |
| Geoscientists, except hydrologists and geographers         | 36.6%         |
| Natural sciences managers                                  | 32.1%         |
| Computer and information research scientists               | 27.4%         |
| Computer and information systems managers                  | 21.6%         |
| Surveying and mapping technicians                          | 21.5%         |
| Software developers                                        | 20.3%         |
| Social scientists and related workers, all other           | 19.9%         |
| Operations research analysts                               | 19.6%         |
| Environmental scientists and specialists, including health | 19.3%         |
| Biological scientists, all other                           | 19.0%         |
| Financial specialists, all other                           | 18.9%         |
| Computer systems analysts                                  | 18.4%         |
| Information security analysts                              | 17.7%         |
| Medical scientists, except epidemiologists                 | 17.3%         |
| Management analysts                                        | 17.2%         |
| Network and computer systems administrators                | 16.2%         |
| Financial risk specialists                                 | 15.8%         |
| Computer occupations, all other                            | 15.8%         |
| Actuaries                                                  | 15.6%         |
| Surveyors                                                  | 15.6%         |
| Science technicians, all other                             | 15.6%         |

|                                                       | Data subcategory       |  |  |
|-------------------------------------------------------|------------------------|--|--|
|                                                       | Business data strategy |  |  |
| Data scientists                                       | 25.7%                  |  |  |
| Database architects                                   | 17.5%                  |  |  |
| Database administrators                               | 14.6%                  |  |  |
| Management analysts                                   | 7.4%                   |  |  |
| Computer and information systems managers             | 7.0%                   |  |  |
| Financial and investment analysts                     | 6.9%                   |  |  |
| Marketing managers                                    | 6.5%                   |  |  |
| Surveying and mapping technicians                     | 6.4%                   |  |  |
| Logisticians                                          | 5.5%                   |  |  |
| Market research and marketing specialists             | 5.5%                   |  |  |
| Transportation, storage, and distribution managers    | 5.5%                   |  |  |
| Financial specialists, all other                      | 4.8%                   |  |  |
| Computer systems analysts                             | 4.6%                   |  |  |
| Statisticians                                         | 4.5%                   |  |  |
| Pharmacists                                           | 4.4%                   |  |  |
| Bus and truck mechanics and diesel engine specialists | 4.4%                   |  |  |
| Software developers                                   | 4.3%                   |  |  |
| General and operations managers                       | 4.3%                   |  |  |
| Sales managers                                        | 4.1%                   |  |  |
| Architectural and engineering managers                | 4.1%                   |  |  |
| Industrial production managers                        | 4.0%                   |  |  |
| Operations research analysts                          | 3.9%                   |  |  |
| Managers, all other                                   | 3.7%                   |  |  |
| Industrial engineers                                  | 3.7%                   |  |  |
| Financial risk specialists                            | 3.6%                   |  |  |

|                                                    | Data subcategory                |  |  |
|----------------------------------------------------|---------------------------------|--|--|
|                                                    | Analyzing trends and prediction |  |  |
| Data scientists                                    | 77.0%                           |  |  |
| Computer and information research scientists       | 63.4%                           |  |  |
| Statisticians                                      | 56.2%                           |  |  |
| Financial and investment analysts                  | 53.2%                           |  |  |
| Database administrators                            | 47.0%                           |  |  |
| Actuaries                                          | 46.2%                           |  |  |
| Database architects                                | 43.9%                           |  |  |
| Financial specialists, all other                   | 42.4%                           |  |  |
| Marketing managers                                 | 34.7%                           |  |  |
| Operations research analysts                       | 34.2%                           |  |  |
| Biological scientists, all other                   | 33.3%                           |  |  |
| Logisticians                                       | 32.3%                           |  |  |
| Social scientists and related workers, all other   | 32.2%                           |  |  |
| Management analysts                                | 32.1%                           |  |  |
| Financial managers                                 | 31.4%                           |  |  |
| Software developers                                | 28.0%                           |  |  |
| Geoscientists, except hydrologists and geographers | 27.8%                           |  |  |
| Market research and marketing specialists          | 27.8%                           |  |  |
| Computer and information systems managers          | 27.3%                           |  |  |
| Financial risk specialists                         | 27.2%                           |  |  |
| Detectives and criminal investigators              | 26.8%                           |  |  |
| Web developers                                     | 24.0%                           |  |  |
| Computer hardware engineers                        | 22.4%                           |  |  |
| Chemists                                           | 22.1%                           |  |  |
| Biological technicians                             | 22.1%                           |  |  |

|                                                  | Data subcategory |  |  |
|--------------------------------------------------|------------------|--|--|
|                                                  | Data software    |  |  |
| Statisticians                                    | 65.4%            |  |  |
| Data scientists                                  | 63.9%            |  |  |
| Database administrators                          | 54.9%            |  |  |
| Computer and information research scientists     | 50.7%            |  |  |
| Software developers                              | 46.4%            |  |  |
| Actuaries                                        | 45.8%            |  |  |
| Database architects                              | 44.0%            |  |  |
| Financial specialists, all other                 | 39.2%            |  |  |
| Software quality assurance analysts and testers  | 36.9%            |  |  |
| Computer hardware engineers                      | 31.7%            |  |  |
| Network and computer systems administrators      | 27.9%            |  |  |
| Web developers                                   | 24.7%            |  |  |
| Computer systems analysts                        | 24.1%            |  |  |
| Computer occupations, all other                  | 23.3%            |  |  |
| Computer programmers                             | 22.3%            |  |  |
| Social scientists and related workers, all other | 22.2%            |  |  |
| Financial and investment analysts                | 21.3%            |  |  |
| Information security analysts                    | 21.2%            |  |  |
| Management analysts                              | 21.1%            |  |  |
| Electronics engineers, except computer           | 20.8%            |  |  |
| Aerospace engineers                              | 20.6%            |  |  |
| Computer network architects                      | 20.3%            |  |  |
| Operations research analysts                     | 19.2%            |  |  |
| Engineers, all other                             | 19.1%            |  |  |
| Financial risk specialists                       | 17.7%            |  |  |

|                                                                                                                 | Data subcategory           |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
|                                                                                                                 | Statistics and mathematics |  |  |
| Statisticians                                                                                                   | 56.3%                      |  |  |
| Actuaries                                                                                                       | 54.1%                      |  |  |
| Gambling dealers                                                                                                | 53.0%                      |  |  |
| Tutors                                                                                                          | 46.0%                      |  |  |
| Computer numerically controlled tool operators                                                                  | 45.7%                      |  |  |
| Machinists                                                                                                      | 45.3%                      |  |  |
| Butchers and meat cutters                                                                                       | 45.2%                      |  |  |
| Pharmacy technicians                                                                                            | 43.1%                      |  |  |
| Cutting and slicing machine setters, operators, and tenders                                                     | 41.1%                      |  |  |
| Grinding, lapping, polishing, and buffing<br>machine tool setters, operators, and<br>tenders, metal and plastic | 40.2%                      |  |  |
| Order clerks                                                                                                    | 39.5%                      |  |  |
| Mixing and blending machine setters, operators, and tenders                                                     | 39.2%                      |  |  |
| Extruding and drawing machine setters, operators, and tenders, metal and plastic                                | 38.5%                      |  |  |
| Packaging and filling machine operators and tenders                                                             | 37.7%                      |  |  |
| Data scientists                                                                                                 | 37.4%                      |  |  |
| First-line supervisors of gambling services workers                                                             | 35.8%                      |  |  |
| Cutting, punching, and press machine setters, operators, and tenders, metal and plastic                         | 35.6%                      |  |  |
| Tool and die makers                                                                                             | 35.6%                      |  |  |
| Financial specialists, all other                                                                                | 34.7%                      |  |  |
| Opticians, dispensing                                                                                           | 34.1%                      |  |  |
| Aircraft structure, surfaces, rigging, and systems assemblers                                                   | 33.3%                      |  |  |
| Computer and information research scientists                                                                    | 31.0%                      |  |  |
| Food preparation workers                                                                                        | 30.7%                      |  |  |
| Printing press operators                                                                                        | 30.5%                      |  |  |
| Hotel, motel, and resort desk clerks                                                                            | 30.3%                      |  |  |

# **ENDNOTES**

- <sup>1</sup> Source: https://www.pewresearch.org/internet/fact-sheet/mobile/
- <sup>2</sup> Source: https://www.datascience4everyone.org/faqs
- <sup>3</sup> Source: https://www.bhef.com/sites/default/files/bhef\_2017\_quant\_crunch.pdf
- <sup>4</sup> Source: https://www.alteryx.com/resources/whitepaper/building-data-talent-for-the-decade-ahead
- 5 Source: https://www.pewresearch.org/short-reads/2022/04/12/10-facts-about-todays-college-graduates/
- <sup>6</sup> Our analysis used as its starting point Lightcast's skill framework, which includes more than 30,000 distinctly listed skills. This project analyzed data science skills from job postings collected during 2023. Extremely low count skills were omitted. In addition, we focused our analysis on data-focused skills rather than on more general computer skills related to software development and system design that are sometimes required in data-centric jobs.
- <sup>7</sup> In this analysis the Burning Glass Institute classifies occupations as either "more data intense" or "less data intense." Those that are more data intense are jobs typically classified as computing, finance, management, engineering and sciences related. Less data intense occupations include all other job categories, including blue collar work, healthcare, education, sales and administrative positions. The analysis also classifies data science skills as either "common," or "specialized." Common skills include those that were more likely to show up in job postings across wider ranges of job categories and include analytics, business intelligence, business metrics, data analysis, forecasting, data collection, data literacy, data recording and data security.
- 8 See, for example: https://www.bls.gov/oes/current/oes152051.htm
- <sup>9</sup> Wage premiums are calculated as percent differences in job ad salaries based on individual skills after controlling for occupation, required education level, required experience level and year.
- <sup>10</sup> For top-listed occupations and excluding first-line supervisors.
- See the BLS Occupational Employment Projections 2022-2032, https://www.bls.gov/emp/